Lick Creek Watershed Restoration Plan

Stakeholder Meeting 3 May 9, 2007

Agenda

- 3:00 Welcome and Introductions
- 3:05 Announcements
- **3:10 Watershed Restoration Goals***
- 3:45 Review of Lick Creek Fieldwork Findings
- 5:30 Adjourn
- * Decision Item

Next meeting: June 20, 3:00 – 5:00 Rollingview Community Center

Review subwatershed-level assessment.-Discuss restoration project prioritization criteria.

Announcements

Lick Creek Watershed Management Goals (part 3)

Lick Creek Restoration Driving Forces

Primary Drivers:

- NC Division of Water Quality "impaired" listing of Lick Creek
- NC DWQ Falls Lake Nutrient Management Strategy

Other (secondary) Drivers:

- The Durham Comprehensive Plan and UDO
- The East Durham Open Space Plan.

Goals and Objectives

Goal: General statement of purpose or intent

Objective: Precise statement of specific action that needs to be done (measurable by indicators)

Lick Creek Restoration Goals

GOAL 1: Develop a hypothesis about the causes of biological impairment in Lick Creek and recommend approaches to addressing impairment status

Lick Creek Restoration Goals

GOAL 2: Identify pollutants and their sources that may be impairing aquatic habitat and water quality in Lick Creek (*water quality is not impaired currently*). Suspected pollutants include dissolved oxygen (and biochemical oxygen demand), fecal coliform and turbidity.

Sediment

Fecal Coliform Bacteria

Lick Creek Restoration Goals

GOAL 3: Develop strategies for reducing, and maintaining at levels meeting water quality standards, the pollutants identified in Goal 2.

Lick Creek Restoration Goals

GOAL 4: Mitigate future changes to watershed hydrology and water quality.

Stakeholder Interests

- Clean water
- Whatever animal life that belong in the watershed will be there
- Good hydrology
- Wildlife habitat connectivity (will still exist)
- Natural topography (developed sites exhibiting natural topography)
- Development for nearby job centers
- Agriculture still being practiced in Lick Creek
- Harmonious multi-use of watershed
- Healthy riparian areas

Additional goals

How are the project goals and these interests compatible?

Additional goals?

Lick Creek Fieldwork Findings (Sally Hoyt, Center for Watershed Protection)

Field Work Purpose

- Evaluate conditions and identify restoration opportunities
- In the stream corridor and uplands

Field Work Partners

- Center for Watershed Protection (CWP)
- Upper Neuse River Basin Association (UNRBA)
- City of Durham Stormwater Services
 Water Quality and Plan Review groups
- Durham County Stormwater and Erosion Control Division
- NC Ecosystem Enhancement Program

The Big Picture

Stream Work

- Walk stream corridor
- Focus on headwater streams
- Look at those most likely to have impacts necessitating restoration
- Also, a representative look at other areas
- Assessment focused on ID of restoration ops
- Assessment focuses on geomorphology, in-stream habitat, and riparian conditions

Confirm condition and identify impacts in riparian corridor

Envision buffer reforestation...

S SPECIAL

Or sometimes buffer reforestation is a no-brainer!

Possible Stream Corridor Restoration Options

- Buffer plantings
- Illicit discharge elimination
- Bank stabilization
- Repairs

Upland Work

- Pre-identified potential retrofit locations based on maps.
- Visited outfalls, existing stormwater areas.
- Visited all potential hotspots in the watershed – marina, gas stations, junkyards, auto repair shops, restaurants

Possible Upland Area Restoration Options

- Stormwater retrofits
- Pollution prevention
- Reforestation

Overall Conditions

- Many Lick Creek tributaries are in good shape from a geomorphic perspective.
- Though this stream is biologically impaired, the impairment may be attributed to sparse in-stream habitat created by the geology and historic impacts.
- Few potential restoration opportunities were found.

Historic Impacts

Wolman, M.G., 1967. A cycle of sedimentation and erosion in urban river channels. *Geografiska Annaler* 49(a).

M. GORDON WOLMAN

SCHEMATIC SEQUENCE: LAND USE, SEDIMENT YIELD

AND CHANNEL RESPONSE

FROM A FIXED AREA

Figure 1. The cycle of land changes, sediment 1150 channel beand vield. Piedmont :1 havior in region beginning prior to advent of extensive the farming and continuing through a period of construction and subsequent urban landscape.

Jacobson, R.B. and Coleman, D.J., 1986. Stratigraphy and recent evolution of Maryland Piedmont Flood Plains. *American Journal of Science* 286:617-637.

TALLE 2

Calculated percentage increases in discharge of 2 yr recurrence flood (Q_{w2}) over Pre-settlement background level for given percentage forcst cover for three time periods. Calculation based on regression model from Walker (1971)

 Time period	% forest	Q., % of Pre-settlement	
Pre-settlement	100		_
 Very Recent	40	144	

VERY RECENT PERIOD

Fig. 7. Flood plain development model. Schematic representation of three-stage development of Maryland Piedmont flood plains. Pre-settlement period (PS): undisturbed stream in natural regime. Agricultural period (A): excessive upland erosion and flood plain sedimentation. Very Recent period (VR): reduced sediment load, reworking of flood plain sediment and redeposition of coarsest sediment as new, lower flood plain level.

Overall Conditions (cont.)

- Conversely, many impacts from ongoing construction activities were found.
- These activities are impacting existing good quality streams and wetlands.
- The focus of the Lick Creek Restoration Plan should therefore be to prevent future impacts and to preserve high quality areas.
- A few restoration activities will complement the overall "prevention" strategy.

Existing Land Use

Distribution of Turf Cover in Suburban Watersheds

Source: MTC (1996), VASS (1998) and PTC (1989)

The Stream and Its Floodplain Before and After Development (201000 2010000 (2007)

Response of Stream Geometry

Impervious Cover Impacts on Aquatic Biota (Sensitive Species)

(Source: Maxted and Shaver, 1997)

Copyright 2000, Center for Watershed Protection

Annual TN Land Use Load

The Effect of Impervious Cover on Urban Phosphorus Load Under Several Scenarios

Copyright 2000, Center for Watershed Protection

Recent & future developmentrelated impacts

- 1. Erosion and sediment control enforcement
- 2. Agriculture exemption abuse regarding erosion and sediment control regulations
- 3. Allowable standards for post-construction stormwater management

Stream and wetland conditions

- 4. Buffer rule enforcement
- 5. Protection of high ecological value streams and wetlands

Restoration possibilities

- 8. Major projects
- 9. Volunteer projects
- 10. Outreach and education

1. Erosion and sediment control enforcement

Agriculture exemption abuse

Post-construction stormwater management

Protection of streams and wetlands

Restoration Projects

Outreach and Education

Conclusion

- We can provide stormwater treatment to approx. 25 acres of existing development.
- We can revegetate up to 1 of stream bank.
- The rest? Protecting lands, best management during development, best management practices after development.

Adjourn