Lick Creek Watershed Restoration Plan

Stakeholder Meeting 7 January 16, 2008 East Durham Regional Branch Library

Agenda

- 3:00 Welcome and Introductions
- 3:05 Housekeeping and Announcements*
- 3:20 Critical Lands Protection Analysis (Chris Dreps)
- 3:50 Subwatershed Analysis (Heather Saunders)
- 4:00 Small Groups: Management Strategies
- 5:00 Adjourn
- * Decision Item

Housekeeping

Next meeting: March??? East Durham Regional Branch Library

Announcements

Lick Creek Critical Lands Protection Analysis

<u>GOAL 4:</u> Mitigate future changes to watershed hydrology and water quality.

<u>**GOAL 3:**</u> Develop strategies for reducing, and maintaining at levels meeting water quality standards, the pollutants identified in Goal 2.

Thank you for providing guidance!

- Richard Broadwell (Triangle Land Conservancy)
- Bev Norwood (Triangle Greenways Council)
- Greg Schuster (Durham County Real Estate and Open Space)

Guidance Criteria

 Base analysis on Upper Neuse Clean Water Initiative (UNCWI) Conservation Plan

Guidance Criteria (continued)

- Assess UNCWI Parcels to see if they meet any of several criteria:
 - Natural Heritage Areas
 - Significant sized tracts
 - Trails corridors
 - Wildlife corridors
 - Adjacency to publicly-owned lands
 - Farmlands
 - Site's development potential (based on zoning)
 - Restoration recommendations (from LC fieldwork)

Next steps...

- Finalize analysis
- Write memorandum
- Post memorandum and map to website

Lick Creek Subwatershed Analysis

Lick Creek Subwatershed Analysis

Subwatershed Data Gathering

- What do data tell us?
 - Projected increases in impervious surface
 - Projected land use changes
 - Projected pollutant loading
 - Current water quality (SW's 1-7 but not SW 3)...DUGA
 - Current bioclassification (SW's 2,3, 6 and 7)

Subwatershed Indicators of Restoration Potential and Future Management Needs													
Basic Watershed Information				Water Quality Monitoring Indicators				Watershed Treatment Model			Fieldwork Future Management Indicators Indicators		gement Need ators
Sub- watershed	Acres	Sq. Miles	Percent (%) Impervious Cover ¹	E. Coli	Nitrog en	Total Phos.	Sedi ment (TSS)	TN	ТР	S edim ent (TSS)	Concentrations of Potential Restoration Projects	Buildout Percent (%) Impervious Cover ¹	Increase in Impervious Cover (Acres)
1	1079	1.69	10.7			✓	✓	\checkmark	✓	✓	√	36.3	276
2	1310	2.05	14.3					✓		✓	√	39.3	327
3	757	1.18	12.4					\checkmark	✓	✓	√	29.8	132
4	698	1.09	2.8	✓	✓			✓	✓	✓		30.3	192
5	1600	2.50	3.0		✓		✓	✓				30.1	433
6	1501	2.35	4.2	\checkmark	✓			✓			√	19.8	234
7	1551	2.42	4.8	\checkmark	✓	✓	✓	✓		✓		25.7	324
8	1294	2.02	3.2	N/A	N/A	N/A	N/A	✓				22.3	247
9	1959	3.06	4.0	N/A	N/A	N/A	N/A					6.3	45
10	1430	2.23	5.4	N/A	N/A	N/A	N/A	✓				11.6	88
11	881	1.38	3.7	N/A	N/A	N/A	N/A	✓				8.3	41
Total	14 060	22.0	5.9									22.6	2330

Projected Changes in Impervious Surface

Projected Changes in Impervious Surface

Projected TN/TSS Pollutant Loading

- Increase in TN
 - Loss of buffer? Increased IP?
- Reduction in TSS
 - At a loss of farmland
- Also note that stream erosion does not change for TSS.
 - Where does it go? Falls Lake?
 - Effect on aquatic habitat

Water Quality (Review)

WS (% imp.)	Sam ples	Biotic Rating	EC	TKN	No _x *	NH ₄	TP	TSS*				
	#		mpn	mg/L								
1 (10.7%)	4		151	0.61	0.05	0.03	0.11	26.8				
2 (14.3%)	6	Fair	153	0.37	0.07	0.05	0.07	5.0				
3 (12.4%)		Poor										
4 (2.8%)	5		202	0.56	0.06	0.07	0.06	7.4				
5 (3.0%)	5		161	0.39	0.08	0.04	0.05	11.9				
6 (4.2%)	4	Poor**	209	0.56	0.08	0.12	0.07	5.1				
7 (4.8%)	28	Poor	2805	0.83	0.12	0.26	0.14	166				

*For High Quality Waters, NO₂ should be < 10.0 mg/L, and Total Coliform Count per 100 mL should be < 200 org for all freshwater classifications (*NCDWQ Water Quality Standards for Freshwater Classifications*for High Quality Waters*).

**This reach has dropped from a classification of Fair in 2004 and 2005.

Take Home Messages

- Use subwatershed data as a tool when developing WS management strategies
- Lick Creek is, at the moment, relatively undeveloped
- Significant increases in impervious surface expected for SW's 1-7 (between 15 and 27.5%)
- Current water quality already poor in some subwatersheds
- Bioclassifications are "Poor" for 80% of sites monitored
- Reduction in total TSS loading at a loss of all farmland.
- In-stream erosion (TSS loading) does not change.
- Increase in TN (Ramifications for Falls Lake)

Our Role? Our Opportunity!

- Some subwatersheds already impacted...<u>restoration</u>?
- Others okay/low buildout...preservation/prevention?
- Combination of strategies in some subwatersheds?
 Watershed Management Plan rather than Watershed Restoration Plan?
- By what process do we choose strategies? Can use SW data as guide.
- We have an <u>opportunity</u> to be innovative!
 - Relatively rural watershed expected to see significant changes = opportunity to trail-blaze and do things differently...and better!!!!

Small Group Activity

 Homework—identifying management strategies Adjourn